Dance of the RNases: coordinating the removal of RNA-DNA hybrids

Further understanding of how cells repair DNA damage associated with RNA-DNA hybrids and how impairment of this process contributes to disease

27 November 2019

JOINT PRESS RELEASE OF THE INSTITUTE OF MOLECULAR BIOLOGY AND JOHANNES GUTENBERG UNIVERSITY MAINZ

Two research teams led by Professor Brian Luke and Professor Helle Ulrich at the Institute of Molecular Biology (IMB) have deciphered how two enzymes, RNase H2 and RNase H1, are coordinated to remove RNA-DNA hybrid structures from chromosomes. RNA-DNA hybrids are important for promoting normal cell activities like gene regulation and DNA repair, but having too many is also a risk for DNA damage and can lead to neurodegenerative disease and cancer. In their recent article published in Cell Reports, Luke and Ulrich show that the enzyme RNase H2 removes RNA-DNA hybrids primarily after DNA replication. Any remaining RNA-DNA structures are then removed by RNase H1, which acts independently of cell cycling.

DNA is normally found as a stable, double-stranded structure. However, DNA also sometimes interacts with RNA to form RNA-DNA hybrid structures that regulate gene expression and DNA repair. R-loops are a special type of RNA-DNA hybrid in which an RNA strand binds to one strand of a DNA molecule and pushes out the other DNA strand so that it is exposed as a single-stranded loop. R-loops can regulate gene activity, but also quickly become dangerous because incorrect removal can damage the DNA, potentially causing mutations. Therefore, excess R-loop formation can be toxic for cells. Indeed, mutations in R-loop removal proteins are known to contribute to neuroinflammatory diseases and cancer.

R-loop removal is catalyzed by the enzymes RNase H1 and RNase H2, which degrade the RNA strand. In addition, RNase H2 also has a secondary ability to excise single ribonucleotides, which can sometimes be mistakenly incorporated into DNA by polymerases in a process known as ribonucleotide excision repair (RER). Previous studies showed that mutation of RNase H2 disrupted genome stability more than RNase H1 mutation, suggesting that RNase H2 has a more important role in maintaining genome stability. However, it was never fully understood how these important enzymes are coordinated.

To dissect the distinct roles of RNase H1 and H2 in R-loop removal, the Luke lab engineered yeast to express RNase H1 and H2 only during specific phases of the cell cycle and then exposed them to methyl methanesulfonate (MMS), an agent that increases R-loop formation. Only yeast that could effectively remove R-loops would survive, while those with impaired R-loop removal would not survive.

With support from the Ulrich lab, they found that yeast expressing RNase H2 exclusively during G2, the growth phase of the cell cycle following DNA replication, were resistant to MMS, whereas yeast expressing RNase H2 only during S phase, which is the DNA replication phase; were more sensitive. This suggested that RNase H2 primarily acts to process R-loops during G2. In contrast, yeast expressing RNase H1 in either G2 or S phase were both able to survive in MMS. Surprisingly, RNase H2 expression in S phase actually induced more DNA damage, which required a special type of DNA repair called homologous recombination to fix. This pathway was not previously known to act during S phase. Therefore, this study may have revealed an unexplored repair pathway which counters damage caused by RNase H2 activity during DNA replication.

These results may explain why cells have evolved two different RNAse H enzymes. "We think that RNase H2 is the 'housekeeping' enzyme that repairs the majority of RNA-DNA hybrids, but it is strictly regulated by cell cycling and acts only in G2 phase, or after DNA replication," clarified Professor Brian Luke. Luke and Ulrich speculate this may be because the additional RER activity of RNase H2 creates nicks in the DNA, which are a risk for double-strand breaks during DNA replication in S phase. Therefore, cells may have also evolved a secondary enzyme, RNase H1, which does not have RER activity and can act in all phases of the cell cycle, including S phase.

These findings help to further understand how cells repair DNA damage associated with RNA-DNA hybrids and how impairment of this process contributes to disease.

Professor Brian Luke is an Adjunct Director at IMB and a Professor of Biology at Johannes Gutenberg University Mainz. Professor Helle Ulrich is the Executive and Scientific Director at IMB and a Professor of Biology at Johannes Gutenberg University Mainz.

About the Institute of Molecular Biology gGmbH

The Institute of Molecular Biology gGmbH (IMB) is a center of excellence in the life sciences that was established in 2011 on the campus of Johannes Gutenberg University Mainz (JGU). Research at IMB concentrates on three cutting-edge areas: epigenetics, developmental biology, and genome stability. The institute is a prime example of a successful collaboration between public authorities and a private foundation. The Boehringer Ingelheim Foundation has dedicated EUR 100 million for a period of 10 years to cover the operating costs for research at IMB, while the state of Rhineland-Palatinate provided approximately EUR 50 million for the construction of a state-of-the-art building.

About the Boehringer Ingelheim Foundation

The Boehringer Ingelheim Foundation is an independent, non-profit organization committed to the promotion of the medical, biological, chemical, and pharmaceutical sciences. It was established in 1977 by Hubertus Liebrecht (1931-1991), a member of the shareholder family of the company Boehringer Ingelheim. With the Perspectives Program "Plus 3" and the Exploration Grants, the foundation supports independent junior group leaders. It also endows the internationally renowned Heinrich Weiland Prize as well as awards for up-and-coming scientists. In addition, the foundation pledged to donate a total of EUR 100 million over 10 years to Mainz University for the scientific running of the Institute of Molecular Biology (IMB) and a further EUR 50 million for the development of the life sciences.